0 oy
Sonsuz Toplamlar kategorisinde tarafından

$$\sum_{n=1}^\infty \frac{n^2}{n^4+2}$$ toplamının yakınsaklığını inceleyiniz.

1 cevap

0 oy
tarafından

Fikir:
Verilen toplamın yakınsaklığını ya da ıraksaklığını bildiğimiz bir toplam ile ilişkilendirerek bulmaya çalışacağız. 

Analiz:
Toplamın içerisindeki ifadeyi daha basit bir biçimde görmeye çalışalım.. Toplamı basitleştirmek istersek paydaki n güçlü terim olan $n^2$ ve paydadaki en güçlü terim olan $n^4$ ile ilgilenmeliyiz. Bu şekilde bir ilişkilendirme ile istenilen toplamı $$\displaystyle\sum_{n=1}^\infty \frac{1}{n^2}$$ toplamı ile ilişkilendirmiş oluruz.

Limit karşılaştırma testi:

Limite bakma:
Toplamımıza iç terimi $1/n^2$ olan toplam ile limit karşılaştırma testi uygulamak uygulayalım. İç terimlerin limitini incelersek \begin{align*}\lim_{n \to \infty}\dfrac{ \dfrac{n^2}{n^4+2}}{\dfrac1{n^2}} \ &= \ \lim\limits_{n \to \infty}\frac{n^4}{n^4+2} \\[15pt] &= \ \lim\limits_{n \to \infty}\frac{1}{1+2n^{-4}}\\[15pt] &= \ \frac{1}{1+2\cdot 0}\\[15pt] &= \ 1\end{align*} eşitliği sağlanır.

Karşılaştırma yapacağımız toplamın yakınsaklığı:
$p=2> 1$ olduğundan $$\displaystyle\sum_{n=1}^\infty \frac1{n^2}$$ toplamı  $p$-toplam testi gereği yakınsaktır.

Karşılaştırma sonucu istediğimiz toplamın yakınsaklığı:
Bu limitin sonucu ile pozitif terimli $$\displaystyle\sum_{n=1}^\infty \dfrac{n^2}{n^4+2}$$ toplamız, limit karşılaştırma testi gereği, yakınsak olur.

...