Kullanıcı kayıtları açıktır. Kayıtlı kullanıcılar sadece soru ve cevaplara oy verebilir. Favoriler bölümüne kendi istedikleri soruları ekleyebilirler.
0 oy
Sonsuz Toplamlar kategorisinde tarafından
\[\sum_{n=1}^\infty \left(\frac{1}{\sqrt n}-\frac{1}{n}\right)\]toplamının yakınsaklığını inceleyiniz.

1 cevap

0 oy
tarafından

Fikir:
Verilen toplamın yakınsaklığını ya da ıraksaklığını bildiğimiz bir toplam ile ilişkilendirerek bulmaya çalışacağız. 

Analiz:
Toplamın terimini aynı payda altında toplarsak toplamı $1/\sqrt n$ terimli $p$-toplam ile ilişkilendirebiliriz.

Limit alma:
Toplamımıza iç terimi $1/\sqrt n$ olan toplam ile limit karşılaştırma testi uygulamak uygulayalım. İç terimlerin limitini incelersek \begin{align*}\lim\limits_{n\to \infty} \dfrac{\dfrac{1}{\sqrt n}-\dfrac{1}{n}}{\dfrac1{\sqrt n}}&=  \lim\limits_{n\to \infty} \left(1-\frac{1}{\sqrt n}\right)\\[15pt]&=  1-0\\[15pt]&=  1\end{align*}eşitliği sağlanır.

Karşılaştırma yapacağımız toplamın ıraksaklığısaklığı:
$p=1/2\le 1$ olduğundan $$\displaystyle\sum_{n=1}^\infty \frac1{n^{1/2}}$$ toplamı  $p$-toplam testi gereği ıraksar.

Toplamın ıraksaklığı:
Bu toplam ıraksak olduğundan, limit karşılaştırma testi gereği, pozitif terimli $$\displaystyle\sum_{n=1}^\infty\left(\frac{1}{\sqrt n}-\frac{1}{n}\right)$$ toplamı ıraksak olur.

...