0 oy
Türev kategorisinde tarafından
$f:\mathbb R \to \mathbb R$ fonksiyonunun kuralı $$f(x)=\begin{cases} x^2\sin\left(\frac1x\right), & x \ne 0 \text{ ise,}\\ 0, &x = 0 \text{ ise.}\end{cases}$$  olsun.  $f$ fonksiyonunun $0$ noktasındaki türevini bulunuz.

1 cevap

0 oy
tarafından

$f$ fonksiyonunun $0$ noktasındaki türevi \begin{align*}\lim_{h \to 0} \frac{f(h)- f(0)}{h}&=\lim_{h \to 0} \frac{h^2\sin\left(\frac1h\right)-0}{h}\\[11pt] &=\lim_{h \to 0}h\sin\left(\frac1h\right)\\[11pt] &\stackrel{*}{=}0\end{align*} değerine eşit olur.

Son eşitliği nasıl elde ettiğimizin açıklaması: 
$h\ne 0$ olmak üzere $-1 \le \sin\left(\frac1h\right) \le 1$ ve $-|h| \le h \le |h|$ eşitsizlikleri sağlandığından $$-|h|\le h\sin\left(\frac1h\right) \le |h|$$ eşitsizliği de sağlanır. $\lim_{h \to 0}(-|h|)=\lim_{h \to 0}|h|=0$ olduğundan, sıkıştırma savı gereği, $$\lim_{h \to 0}h\sin\left(\frac1h\right)=0$$ eşitliği sağlanır.

...