Fikir:
Verilen toplamın yakınsaklığını ya da ıraksaklığını bildiğimiz bir toplam ile ilişkilendirerek bulmaya çalışacağız.
Analiz:
Seri açılımı ile elde ettiğimiz $\sin x$ ile $x-\frac16x^3$ arasındaki ilişkiyi kullanarak $p$-toplamları ile ilişkilendireceğiz.
Direkt karşılaştırma testi için bir eşitsizlik:
Her pozitif $n$ tam sayısı için $x-\frac16x^3\le \sin x$ eşitsizliği sağlanır ve \begin{equation}0\le 1-n\sin\left(\dfrac{1}{n}\right)\le 1-n\cdot \left(\frac1n-\frac1{n^3}\right)=\frac1{n^2}\end{equation}eşitsizliğini elde ederiz.
Karşılaştırma yapacağımız toplamın yakınsaklığısaklığı:
$p=2> 1$ olduğundan $$\displaystyle\sum_{n=1}^\infty \frac1{n^2}$$ toplamı $p$-toplam testi gereği yakınsar.
Toplamın yakınsaklığı:
Bu toplam yakınsak olduğundan ve Eşitlik ... sağlandığından, direkt karşılaştırma testi gereği, $$\displaystyle\sum_{n=1}^\infty \left(1-n\sin\left(\dfrac{1}{n}\right)\right)$$ toplamı yakınsak olur.